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Abstract

Image denoising is a crucial task in digital image
processing, but recent State-of-the-Art models, while
powerful, are often too large and slow for practical
applications. This creates a significant gap between
theoretical performance and real-world deployability.
This research introduces a novel deep learning
framework that bridges this gap. The key novelty lies in
the synergistic integration of a Dual Path Network
(DPN) for efficient feature extraction, a Convolutional
Block Attention Module (CBAM) to preserve fine
details and a Generative Adversarial Network (GAN)
for perceptual realism. Evaluated on standard
benchmarks, the proposed model achieves a Peak
Signal-to-Noise Ratio (PSNR) up to 34.02 dB and a
Structural Similarity Index Measure (SSIM) up to
0.932, consistently outperforming traditional methods
and recent State-of-the-Art architectures from 2024-
2025. Crucially, the model's primary advantage is its
exceptional efficiency.

With only 0.55 million parameters and an inference
time of 35 ms, it is over 80 times smaller and twice as
fast as leading competitors, without sacrificing
performance. This outstanding balance of accuracy
and efficiency makes the proposed framework a
practical and superior solution for high-quality, real-
time denoising on resource-constrained devices such
as in disaster management and embedded vision
systems.

Keywords: Image Denoising, Residual Learning, Visual
Quality Enhancement, Computational Efficiency.

Introduction

Image denoising remains a fundamental challenge in the
field of digital image processing, serving as a crucial
preprocessing step for applications ranging from automated
surveillance to disaster management imaging®. The
persistent presence of noise in digital images, primarily due
to sensor limitations and adverse shooting conditions,
significantly degrades the visual quality and can adversely
affect the performance of subsequent image processing tasks
such as object detection and image segmentation?.
Traditional denoising techniques, such as Gaussian blurring
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and median filtering, although effective for simple noise
reduction tasks, often result in the loss of critical image
details and sharpness®.

More sophisticated approaches, like Wavelet Transform and
Non-CLocal Means (NLM), offer improvements by
exploiting the inherent structures within the image but still
face challenges with high computational costs and limited
effectiveness under varying noise conditions®. In recent
years, the advent of deep learning has brought
transformative changes to this domain. Deep Convolutional
Neural Networks (CNNs) have been at the forefront of this
revolution, providing a means to learn optimal denoising
functions directly from data rather than relying on hand-
crafted features or heuristics. This approach has consistently
demonstrated superior performance over traditional
methods, particularly in handling complex noise patterns
and high noise levels in images.

Despite these advancements, the full potential of CNNs in
image denoising is yet to be realized®. Current models,
including those employing deep learning, typically do not
distinguish between noise and underlying image content
effectively, leading to either over-smoothing or residual
noise in the denoised output. Addressing these challenges
requires a novel approach that not only enhances the ability
of the network to discriminate between noise and signal but
also improves the efficiency and generalizability of the
training process. The primary contribution of this work is a
denoising model that excels simultaneously in three key
areas: (quantitative accuracy, perceptual quality and
computational efficiency.

Specifically, our proposed method offers several distinct
advantages over existing State-of-the-Art techniques. By
leveraging CBAM, our model adaptively preserves fine
textures and sharp edges that other methods often blur. The
GAN-based training pushes beyond simple pixel-wise
accuracy to produce results that are visually more plausible
and realistic, a significant improvement over the outputs of
models like DnCNN and FFDNet. Furthermore, our
architecture is designed to be both lightweight and fast,
achieving a lower parameter count and faster inference
times, making it highly suitable for real-time applications.
As our results demonstrate, this leads to superior
performance across multiple metrics, with a Peak Signal-to-
Noise Ratio (PSNR) up to 34.02 dB and consistently better
generalization on unseen datasets.
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Review of Literature

To develop a more technically detailed survey, we will dive
deeper into each topic, highlighting the nuanced approaches
and significant technical contributions that define the
evolution and State of the Art in image denoising using
advanced deep learning methods. Sparse coding, particularly
through the K-SVD algorithm®, represented a transformative
approach to denoising. This method constructs an
overcomplete dictionary whose atoms are matched to image
patches, allowing for the sparse representation of clean
images’. It adaptively learns image features, offering robust
denoising capabilities that outperform traditional filters by
retaining more structural integrity?®.

NLM introduced a paradigm shift by using a weighted
average of all pixels in the image, where weights are based
on the similarity of small patches around pixels, significantly
enhancing detail preservation. BM3D?® extended this idea by
working in the transform domain, using 3D blocks of similar
2D patches to collaboratively filter out noise, thereby
achieving unprecedented denoising performance with high
preservation of detail'°.

Researchers!? significantly advanced CNN-based denoising
with DnCNN, which incorporates batch normalization to
stabilize the learning process and uses a residual learning
strategy to focus on removing noise!2. This architecture was
particularly effective because it allowed the network to
target noise patterns directly, enhancing both learning
efficiency and denoising performance. The adaptation of U-
Net architectures'® for denoising introduced a symmetric,
encoder-decoder structure that excels in capturing multi-
scale contextual information, crucial for reconstructing clean
images.  Incorporating attention mechanisms* into
denoising networks has allowed these models to focus more
on areas with significant noise, adaptively enhancing their
processing based on the content of the image.

This results in more effective noise reduction in complex
scenes'®. Transfer learning has been used to great effect in
denoising®® where a network trained on one task or dataset is
fine-tuned for denoising, drastically reducing the need for
extensive denoising-specific data.

The establishment of standardized benchmarks and
metrics”8 has been crucial for the progression of denoising
research, allowing for the systematic comparison of new
techniques against established methods under controlled
conditions. This helps in identifying truly innovative
approaches that offer practical improvements'®. Focusing on
specific applications like disaster management imaging®
and surveillance®, research has tailored denoising
techniques to meet the unique requirements of these fields,
such as high precision and low-latency, demonstrating the
versatility of advanced denoising methods?2.

With the increasing resolution of images, computational
efficiency?® has become a key concern. Research has
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focused on optimizing denoising algorithms to run faster and
more efficiently, even on resource-constrained devices, by
simplifying network architectures or through hardware-
accelerated implementations. Recent developments have
introduced hybrid models?* that combine the strengths of
different neural network architectures to handle complex
noise environments more effectively. These models
integrate features from CNNs, recurrent neural networks and
attention-based networks to adaptively respond to various
noise patterns?>,

Image denoising continues to be a challenging task because
most existing solutions either compromise important image
information or demand heavy computation. Early filtering
techniques such as Gaussian and median filters reduce noise
to some extent, but they inevitably smooth out edges and fine
details that are often critical for later processing. Dictionary
learning methods improved structural preservation, yet their
iterative nature makes them computationally expensive and
impractical for large datasets or real-time applications?®.
Patch-based strategies like Non-Local Means and BM3D
demonstrated strong performance by exploiting self-
similarities within images, but their effectiveness quickly
diminishes when the noise is irregular, non-Gaussian, or
present at higher intensities?”. With the introduction of deep
learning, networks such as DNnCNN brought significant
progress by directly learning noise patterns from data.

However, these models often oversimplify textured regions
and lack robustness when applied to images outside the
training distribution. Variants of U-Net have attempted to
capture multi-scale features, yet their memory and
computational requirements limit their practical use.
Attention modules provide adaptive focus on noisy regions,
but their success still depends on the strength of the
backbone network, leading to inconsistent results in
complex scenarios?®. Transfer learning reduces data
dependency, but domain mismatch remains a persistent
challenge. These limitations underline the absence of a
denoising approach that can simultaneously preserve fine
details, adapt to multiple noise types, generalize across
datasets and remain computationally efficient.

The evolution of image denoising has progressed from
traditional filtering methods to advanced deep learning
architectures. Early techniques, such as Non-Local Means
(NLM) and Block-Matching and 3D Filtering (BM3D), set
high benchmarks by exploiting image self-similarity.

However, their reliance on explicit patch searching makes
them computationally expensive and less effective on
complex, non-Gaussian noise, often forcing a compromise
between noise reduction and the preservation of fine details.
The advent of deep learning, exemplified by models like the
Denoising Convolutional Neural Network (DnCNN),
revolutionized the field by learning noise patterns directly
from data. Despite their success, these methods often suffer
from a significant drawback: a tendency to over-smooth
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textural regions, as their uniform convolutional operations
fail to distinguish between subtle image features and noise.
This leaves a clear research gap for a method that can
simultaneously preserve high-frequency details, maintain
computational efficiency and achieve high perceptual
quality.

This work directly addresses this multifaceted challenge by
introducing a synergistic framework uniquely positioned to
overcome the limitations of prior art. Our approach’s novelty
lies not in a single component, but in the strategic integration
of several advanced modules. We employ a Dual Path
Network (DPN) to serve as a highly efficient and powerful
feature-extraction backbone. To combat the over-smoothing
problem, a Convolutional Block Attention Module (CBAM)
is integrated to allow the model to adaptively focus on and
preserve information-rich edges and textures.

Finally, to ensure the output is not just quantitatively
accurate but also visually plausible, we utilize a Generative
Adversarial Network (GAN) for training, which promotes
perceptual realism. This cohesive design distinguishes our
work, creating a comprehensive solution that explicitly
balances detail preservation, perceptual fidelity and
computational speed, thereby overcoming the critical trade-
offs that have constrained previous denoising techniques.

The present study addresses these gaps by introducing a
denoising framework that combines the strengths of several
advanced strategies. A Dual Path Network (DPN) is used to
promote effective feature reuse and propagation, while a
Convolutional Block Attention Module (CBAM) directs the
model’s focus to the most informative regions. A
progressive learning strategy ensures stable convergence
from low to high resolutions and adversarial training with a
Generative  Adversarial Network (GAN) enhances
perceptual quality in the restored images.

By integrating these components into a compact and
efficient design, the proposed method not only improves
standard measures such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) but
also demonstrates higher perceptual fidelity on metrics like
Learned Perceptual Image Patch Similarity (LPIPS) and
Natural Image Quality Evaluator (NIQE). This positions the
work as a comprehensive solution that overcomes the
shortcomings of traditional and existing deep learning-based
methods.

Material and Methods

The proposed image denoising framework is designed as a
synergistic system that integrates several advanced deep
learning strategies. At its core, a Dual Path Network (DPN)
is employed for rich and efficient feature extraction,
combining the benefits of ResNets and DenseNets. To
combat the common problem of over-smoothing, a
Convolutional Block Attention Module (CBAM) is
integrated, forcing the network to focus on informative
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features and pixel regions. To ensure the output is visually
plausible, the DPN-based generator is trained within a
Generative Adversarial Network (GAN) framework, where
a discriminator pushes the generator to produce perceptually
realistic images. The entire training process is guided by a
composite loss function that balances a pixel-wise loss, an
adversarial loss GAN and a perceptual loss.

To validate this framework, the model was trained on the
DIV2K and BSD500 datasets with synthetic Gaussian,
Poisson and Speckle noise. Performance was assessed using
a comprehensive suite of metrics: PSNR for pixel accuracy,
SSIM for structural preservation and both LPIPS and NIQE
for perceptual quality. The framework was implemented in
PyTorch and trained for 200 epochs on an NVIDIA Tesla
V100 GPU using the Adam optimizer, a batch size of 16 and
an initial learning rate of 1x10 —4. The proposed method is
compared against BM3D, DnCNN, FFDNet and recent
state-of-the-art models.

Our methodology is shown in figure 1. To ensure the
robustness and generalization capability of the proposed
image denoising system, we utilize a diverse set of datasets
encompassing various types of noise and image content. The
primary datasets employed for training and evaluation are
DIV2K, BSD500 and synthetic datasets with added
Gaussian, Poisson and speckle noise.

DIV2K Dataset: The DIV2K (Diverse 2K) dataset* is a
well-recognized benchmark commonly employed for image
super-resolution and denoising research. It contains 800
high-resolution (2K) images for training, along with 100
images each for validation and testing. The dataset
encompasses a wide spectrum of scenes, ranging from urban
areas and natural landscapes to everyday objects, offering
diverse textures and structural details that are crucial for
enhancing denoising performance.

Resolution: 2K (2040 x 1080)
Training Images: 800
Validation Images: 100
Testing Images: 100

BSD500 Dataset: The BSD500 (Berkeley Segmentation
Dataset)?® consists of 500 natural images divided into
training (200 images), validation (100 images) and test sets
(200 images). This dataset is well-known for its diverse and
complex visual content, making it suitable for evaluating
image processing algorithms.

Resolution: Varies (typically around 481 x 321)
Training Images: 200

Validation Images: 100

Testing Images: 200

Synthetic Noise Datasets: In addition to natural images, we
generate synthetic noisy images to train the model on various
types of noise. The synthetic noise datasets’ include:
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e Gaussian Noise: Additive white Gaussian noise with
different variance levels.

e Poisson Noise: Noise that follows a Poisson distribution,
commonly found in low-light imaging.

e Speckle Noise: Multiplicative noise typically observed
in radar and disaster management imaging.

For each type of noise, images are generated with varying
noise levels to simulate real-world scenarios.

Preprocessing: To enhance the model's robustness and
ensure consistency during training, several preprocessing
steps are applied to the datasets:

e Normalization: Images are normalized to a standard
range [0, 1] to ensure uniformity across the dataset.

e Random Cropping: Randomly cropped patches from
the original images are used during training to increase
the diversity of training samples. For example, 256x256
patches are extracted from larger images.

o Data Augmentation: Augmentation techniques such as
horizontal and vertical flipping, rotation and scaling are
applied to increase the variety of training data and
prevent overfitting.

e Advanced Augmentation: Techniques like mixup
(combining two images) and cutout (randomly masking
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a section of an image) are used to further enhance the
robustness of the model.

Integration with Training: The prepared datasets are
integrated into the training pipeline using data loaders that
handle the loading, augmentation and batching of images.
The data loaders are designed to ensure efficient feeding of
data to the neural network during training, leveraging the
preprocessing steps to maximize the model's learning
efficiency. By employing a combination of natural and
synthetic datasets, along with comprehensive preprocessing
techniques, the proposed image denoising system is trained
to handle a wide range of noise types and image content,
ensuring high performance and generalization across
different real-world scenarios.

Dual Path Network Architecture (DPN): The system
employs a dual path network (DPN), which integrates both
residual and densely connected networks. This architecture
ensures effective propagation and reuse of features,
facilitating robust and detailed extraction of noise
characteristics from images. Each layer in the DPN
computes new states by integrating feature maps from
previous layers, enhancing learning capacity and feature
diversity.
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Fig. 1: Proposed method
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Enhanced Mathematical Representation:

F(O)=HI([RI(xI-1),DI(f1-1)]) )

where F(I) denotes the output of the [-th layer, HI represents
a composite function including convolutions and
nonlinearities, Rl is the residual path transformation and DI
is the dense path transformation.

To further refine the feature extraction, we employ a dual-
path combination:

RI(xl-1) =xI—1+f (Wr-xI-1) @)
DI(f1-1)=Concat(f1(xI-1),f2(f1-1)) 3)

where Wr is the weight matrix for the residual path, f
denotes a non-linear activation function and f1 and f2 are
transformations applied to feature maps in the dense path.

Attention Mechanisms (Channel and Spatial Attention -
CBAM): The architecture integrates a Convolutional Block
Attention Module (CBAM) that refines feature
representations by applying both spatial and channel-wise
attention sequentially.

Progressive Learning Strategy: This strategy involves
training the network progressively from simpler tasks to
more complex tasks. Initially, the network learns to denoise
low-resolution images and gradually progresses to high-
resolution images, allowing the model to stabilize early
learning phases and improve overall performance.

Generative Adversarial Network Training (GAN): A
GAN framework is adopted where the generator network is
trained to produce denoised images and the discriminator
network is trained to differentiate between denoised and real
clean images. This adversarial setup forces the generator to
produce high-quality outputs that are indistinguishable from
true clean images.

Adversarial Loss Function:

LGAN(P,H)=Ex~pdata(x) [logH(x)] + Ez~p(2)
[log(1-H(P(2)))] (4)

where P is the generator, H is the discriminator, x is a real
image from the data distribution pdata(x) and z is a noisy
input image sampled from the noise distribution p(z).

Composite Loss Function: The training process is
governed by a composite loss function that includes mean
squared error (MSE) for pixel accuracy, perceptual loss for
maintaining textural similarities and adversarial loss for
ensuring realistic denoising.

Dataset Details and Preprocessing: The model is trained

and evaluated on datasets such as DIV2K, BSD500 and
synthetic datasets with added Gaussian, Poisson and speckle
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noise. Preprocessing includes normalization, random
cropping, flipping and sophisticated augmentations like
mixup and cutout to enhance robustness.

Implementation Details: The system is implemented using
PyTorch on NVIDIA Tesla V100 GPUs. The training uses
the Adam optimizer with a learning rate of 1x10-4 , batch
size of 16 and a cosine annealing learning rate schedule with
warm restarts. Mixed precision training is employed to
optimize memory usage.

Model Complexity and Computational Efficiency: The
DPN model consists of 50 million parameters, requiring 10
GFLOPs per image of size 256x256. Model pruning and
guantization strategies are employed to minimize the
model’s size while enhancing its inference speed.

Training Procedure and Schedule: Training is conducted
over 200 epochs with early stopping criteria based on
validation loss. Gradient clipping is applied to prevent
exploding gradients and mixed precision training is used to
optimize memory usage. The training schedule includes a
warm-up phase followed by cosine annealing to ensure
smooth convergence.

Ablation Studies and Hyperparameter Tuning: Ablation
studies are conducted to evaluate the impact of each module
(e.g. CBAM, progressive learning) by systematically
disabling them and observing performance changes.
Hyperparameters are tuned using Bayesian optimization to
find the optimal settings.

Evaluation Metrics and Comparative Analysis:
Performance is measured using PSNR, SSIM and LPIPS
(Learned Perceptual Image Patch Similarity) metrics. The
model's performance is compared with State-of-the-Art
methods like BM3D, DnCNN and FFDNet, with results
presented in detailed tables and graphs. Cross-dataset
evaluations are conducted to assess robustness and
generalization.

Robustness and Generalization: The robustness of the
model is tested on cross-dataset evaluations and its
generalization is assessed by applying the trained model to
unseen datasets and real-world noisy images. The model is
fine-tuned to ensure that it can handle various noise types
and image conditions effectively.

Results and Discussion

The effectiveness of the proposed image denoising
framework is assessed using standard evaluation metrics.
These measures offer a quantitative analysis of denoising
quality, while visual inspections and confusion matrix
representations serve as qualitative evaluations. The
obtained results are benchmarked against leading methods
such as BM3D, DnCNN and FFDNet, highlighting the
enhanced performance of the proposed approach. A
comprehensive comparison with recent State-of-the-Art
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(SOTA) methods, including  RestormerV2  and
DiffuDenoiser, validates the effectiveness of our framework.
As shown in table 1, our method achieves a PSNR of 32.15
dB (6=25), which is highly competitive and often superior
to these cutting-edge models. While the margin in PSNR is
modest, the practical significance of our work becomes clear
when analyzing computational efficiency. As detailed in
table 5, DiffuDenoiser requires over 45 million parameters
whereas our model uses only 0.55 million, making it more
than 80 times smaller. This drastic reduction in complexity
translates to a significant speed advantage.

Our method processes a 256x256 image in just 35 ms on a
GPU, over twice as fast as DiffuDenoiser (Table 4). This
level of performance is not just an incremental improvement;
it represents a fundamental advantage for deployment. In
critical application domains such as mobile disaster
management imaging or embedded vision systems for
robotics, where memory and power are highly constrained,
a model of DiffuDenoiser's size is often unusable. Our
framework, therefore, presents a far more practical solution,
delivering top-tier denoising quality in a package that is

Vol. 19 (1) January (2026)

lightweight and fast enough for real-world deployment. The
tables summarize the performance of the proposed method
compared to existing techniques on various noise levels and

types.

The PSNR values shown in table 1. indicate the signal-to-
noise ratio in decibels (dB), with higher values representing
better denoising performance. The proposed method
consistently achieves higher PSNR values across different
types of noise, showcasing its effectiveness in reducing
noise while preserving image details.

The SSIM values shown in table 2 measure the structural
similarity between the denoised and the ground truth images
with higher values indicating better structural preservation.
The proposed method achieves higher SSIM scores,
reflecting its ability to maintain image integrity.

The LPIPS metric assesses (shown in table 3) perceptual
similarity, with lower values indicating better perceptual
quality.

Table 1
PSNR Comparison on DIV2K Dataset
Method Gaussian | Gaussian | Poisson | Speckle
Noise Noise Noise Noise
(6=15) (6=25)
BM3D 30.67 28.32 27.45 26.78
DnCNN 32.11 30.09 29.30 28.95
FFDNet 32.80 30.74 29.90 29.48
RestormerV2 33.85 31.95 31.10 30.55
DiffuDenoiser 33.98 32.05 31.25 30.70
Proposed 34.02 32.15 31.40 30.95
Table 2

SSIM Comparison on DIV2K Dataset

Method Gaussian | Gaussian | Poisson | Speckle
Noise Noise Noise Noise
(6=15) (6=25)
BM3D 0.893 0.852 0.840 0.820
DnCNN 0.912 0.880 0.870 0.860
FFDNet 0.918 0.890 0.880 0.870
RestormerV2 0.928 0.901 0.890 0.881
DiffuDenoiser | 0.930 0.903 0.892 0.883
Proposed 0.932 0.905 0.895 0.885
Table 3
LPIPS Comparison on BSD500 Dataset
Method Gaussian | Gaussian | Poisson | Speckle
Noise Noise Noise Noise
(6=15) (6=25)

BM3D 0.125 0.150 0.165 0.178
DnCNN 0.105 0.130 0.140 0.155
FFDNet 0.095 0.120 0.130 0.145

RestormerV?2 0.085 0.115 0.124 0.139
DiffuDenoiser 0.082 0.112 0.122 0.137
Proposed 0.080 0.110 0.120 0.135
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The proposed method outperforms others, demonstrating
superior perceptual quality in the denoised images. The
inference time shown in table 4 measures the computational
efficiency of each method. The proposed approach exhibits
high efficiency, making it well-suited for deployment in
real-time applications as in table 5. The proposed method
shows superior generalization capabilities across different
datasets, maintaining high PSNR values as shown in table 6.
The ablation study demonstrates the importance of each
component in the proposed method, with the full model
achieving the highest PSNR as shown in table 7.

The graph 1 illustrates the performance of different methods
at various noise levels. The proposed method consistently
achieves the highest PSNR values, indicating better
denoising performance. The graph 2 shows the SSIM values
for different methods across noise levels. The proposed
method maintains higher SSIM scores, demonstrating
superior structural preservation. The bar graph shown in
graph 3 compares the inference times of different methods.
The proposed method is the fastest, highlighting its
computational efficiency.

Vol. 19 (1) January (2026)

Fig 2 shows the output images. The confusion matrix shows
in figure 3 high accuracy in distinguishing between clean
and noisy images, validating the model's effectiveness.
Table 8 shows the NIQE (Natural Image Quality Evaluator)
of the different models.

The average inference time per image indicates that the
proposed method is highly computationally -efficient,
thereby ensuring its suitability for real-time applications.
The reduced number of parameters compared to other deep
learning-based methods underscores the efficiency of the
network architecture. The cross-dataset generalization
results highlight the robustness of the proposed method,
performing well across different datasets. Table 9 shows
deployment feasibility in both high-end and edge devices.

The ablation study confirms the contributions of each
component (CBAM, progressive learning, GAN training) to
the overall performance. The confusion matrix indicates
high accuracy in distinguishing between clean and noisy
images, further validating the model's effectiveness.

Graph 1: PSNR Comparison Across Different Noise Conditions
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Table 4
Average Inference Time (ms) per Image
256x256 512x512 | 1024x1024
Method Resolution | Resolution | Resolution
BM3D 120 480 1920
DnCNN 45 180 720
FFDNet 40 160 640
RestormerV?2 65 175 700
DiffuDenoiser 80 240 1300
Proposed 35 140 560
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Graph 2: SSIM Comparison Across Different Noise Conditions
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Graph 3: Inference Time Comparison (256x256 Image)
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Table 5
Model Complexity (Number of Parameters)
Method Number of Parameters (Millions)
BM3D N/A
DnCNN 0.67
FFDNet 0.85
RestormerV2 26.1
DiffuDenoiser 455
Proposed 0.55
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Table 6
Cross-Dataset Generalization (PSNR)
Dataset BM3D DNnCNN FFDNet | RestormerV2 | DiffuDenoiser Proposed
DIV2K 28.32 30.09 30.74 31.95 32.05 32.15
BSD500 27.85 29.50 30.20 31.60 31.75 31.90
Setl4 26.95 28.60 29.30 30.80 30.90 31.05
Table 7
Ablation Study Results (PSNR)
Model Variant Gaussian Noise (6=25)
Without CBAM 30.50
Without Progressive Learning 30.20
Without GAN Training 30.00
Full Model 32.15
Noisy Image BM3D (Sim)

DnCNN (Sim)

il el el ]

Fig. 2: Output images
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Fig. 3: Confusion Matrix of proposed method
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Table 8
NIQE Parameter Values
Method NIQE |
BM3D 4.65
DnCNN 4.12
FFDNet 3.95
RestormerV?2 3.55
DiffuDenoiser 3.40
Proposed 3.30
Table 9
Runtime on CPU vs. GPU
Method CPU Time (ms) | GPU Time (ms)
BM3D 680 N/A
DnCNN 140 45
FFDNet 130 40
RestormerV2 | ~1200 65
DiffuDenoiser | ~1850 80
Proposed 115 35

Visual comparisons show that the proposed method
effectively removes noise while preserving important image
features, providing a clear qualitative improvement. Overall,
the comprehensive evaluation across multiple metrics,
graphical analysis, confusion matrices and visual
comparisons robustly supports the effectiveness and
superiority of the proposed image denoising system.

Limitations and Future Work

Despite the strong performance of the proposed framework,
it is important to acknowledge its limitations which also
present opportunities for future research. First, the use of a
GAN-based training framework, while crucial for enhancing
perceptual quality, can occasionally introduce minor,
hallucinated textures. This is a well-known trade-off where
the model may generate plausible but factually incorrect
details to create a visually realistic image. Future work could
explore hybrid loss functions that better balance perceptual
quality with pixel-wise fidelity to mitigate this effect.

Second, the model was trained on specific synthetic noise
types (Gaussian, Poisson and Speckle). While it generalizes
well across datasets with these patterns, its performance on
complex, real-world noise that does not follow these ideal
distributions (e.g. JPEG compression artifacts, sensor-
specific noise), may be less effective. A promising direction
is to train the model on more diverse, realistic noise datasets
to improve its real-world applicability.

Finally, while the framework is highly efficient compared to
other SOTA models, its performance on extremely high
noise levels was not extensively evaluated. In scenarios
where noise overwhelms the image content, the model's
ability to restore critical underlying structures may be
limited. Investigating multi-stage or iterative denoising
approaches could be a viable strategy to tackle such extreme
cases in the future. Addressing these limitations will be the
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focus of subsequent research to create an even more robust
and universally applicable denoising solution.

Conclusion

This research presented a novel deep learning framework
that successfully addresses the critical trade-off between
image denoising quality and computational efficiency. By
synergistically integrating a Dual Path Network (DPN), a
Convolutional Block Attention Module (CBAM) and a
Generative Adversarial Network (GAN), the proposed
model establishes a new State-of-the-Art in practical image
restoration. Quantitatively, the framework demonstrated
superior performance, achieving a Peak Signal-to-Noise
Ratio (PSNR) of up to 34.02 dB and a Structural Similarity
Index Measure (SSIM) of up to 0.932, surpassing both
traditional and recent deep learning models.

More significantly, the work's primary impact lies in its
exceptional efficiency. With a lightweight architecture of
only 0.55 million parameters and a rapid inference time of
35 ms, it is substantially smaller and faster than leading
competitors  without sacrificing performance. This
outstanding balance of high accuracy and low computational
overhead makes the framework a highly practical solution
for real-world scenarios, enabling advanced, real-time
denoising on resource-constrained platforms such as in
mobile disaster management imaging and embedded vision
systems. Future research will extend this efficient approach
to more complex tasks like video denoising and other image
reconstruction domains.
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