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Abstract 
Image denoising is a crucial task in digital image 

processing, but recent State-of-the-Art models, while 

powerful, are often too large and slow for practical 

applications. This creates a significant gap between 

theoretical performance and real-world deployability. 

This research introduces a novel deep learning 

framework that bridges this gap. The key novelty lies in 

the synergistic integration of a Dual Path Network 

(DPN) for efficient feature extraction, a Convolutional 

Block Attention Module (CBAM) to preserve fine 

details and a Generative Adversarial Network (GAN) 

for perceptual realism. Evaluated on standard 

benchmarks, the proposed model achieves a Peak 

Signal-to-Noise Ratio (PSNR) up to 34.02 dB and a 

Structural Similarity Index Measure (SSIM) up to 

0.932, consistently outperforming traditional methods 

and recent State-of-the-Art architectures from 2024-

2025. Crucially, the model's primary advantage is its 

exceptional efficiency.  

 

With only 0.55 million parameters and an inference 

time of 35 ms, it is over 80 times smaller and twice as 

fast as leading competitors, without sacrificing 

performance. This outstanding balance of accuracy 

and efficiency makes the proposed framework a 

practical and superior solution for high-quality, real-

time denoising on resource-constrained devices such 

as in disaster management and embedded vision 

systems. 
 

Keywords: Image Denoising, Residual Learning, Visual 

Quality Enhancement, Computational Efficiency. 

 

Introduction 
Image denoising remains a fundamental challenge in the 

field of digital image processing, serving as a crucial 

preprocessing step for applications ranging from automated 

surveillance to disaster management imaging1. The 

persistent presence of noise in digital images, primarily due 

to sensor limitations and adverse shooting conditions, 

significantly degrades the visual quality and can adversely 
affect the performance of subsequent image processing tasks 

such as object detection and image segmentation2. 

Traditional denoising techniques, such as Gaussian blurring 

and median filtering, although effective for simple noise 

reduction tasks, often result in the loss of critical image 

details and sharpness3.  

 

More sophisticated approaches, like Wavelet Transform and 

Non-CLocal Means (NLM), offer improvements by 

exploiting the inherent structures within the image but still 

face challenges with high computational costs and limited 

effectiveness under varying noise conditions4. In recent 

years, the advent of deep learning has brought 

transformative changes to this domain. Deep Convolutional 

Neural Networks (CNNs) have been at the forefront of this 

revolution, providing a means to learn optimal denoising 

functions directly from data rather than relying on hand-

crafted features or heuristics. This approach has consistently 

demonstrated superior performance over traditional 

methods, particularly in handling complex noise patterns 

and high noise levels in images. 

 

Despite these advancements, the full potential of CNNs in 

image denoising is yet to be realized5. Current models, 

including those employing deep learning, typically do not 

distinguish between noise and underlying image content 

effectively, leading to either over-smoothing or residual 

noise in the denoised output.  Addressing these challenges 

requires a novel approach that not only enhances the ability 

of the network to discriminate between noise and signal but 

also improves the efficiency and generalizability of the 

training process. The primary contribution of this work is a 

denoising model that excels simultaneously in three key 

areas: quantitative accuracy, perceptual quality and 

computational efficiency.  

 

Specifically, our proposed method offers several distinct 

advantages over existing State-of-the-Art techniques. By 

leveraging CBAM, our model adaptively preserves fine 

textures and sharp edges that other methods often blur. The 

GAN-based training pushes beyond simple pixel-wise 

accuracy to produce results that are visually more plausible 

and realistic, a significant improvement over the outputs of 

models like DnCNN and FFDNet. Furthermore, our 

architecture is designed to be both lightweight and fast, 

achieving a lower parameter count and faster inference 

times, making it highly suitable for real-time applications. 

As our results demonstrate, this leads to superior 
performance across multiple metrics, with a Peak Signal-to-

Noise Ratio (PSNR) up to 34.02 dB and consistently better 

generalization on unseen datasets. 
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Review of Literature 
To develop a more technically detailed survey, we will dive 

deeper into each topic, highlighting the nuanced approaches 

and significant technical contributions that define the 

evolution and State of the Art in image denoising using 

advanced deep learning methods. Sparse coding, particularly 

through the K-SVD algorithm6, represented a transformative 

approach to denoising. This method constructs an 

overcomplete dictionary whose atoms are matched to image 

patches, allowing for the sparse representation of clean 

images7. It adaptively learns image features, offering robust 

denoising capabilities that outperform traditional filters by 

retaining more structural integrity8. 

 

NLM introduced a paradigm shift by using a weighted 

average of all pixels in the image, where weights are based 

on the similarity of small patches around pixels, significantly 

enhancing detail preservation. BM3D9 extended this idea by 

working in the transform domain, using 3D blocks of similar 

2D patches to collaboratively filter out noise, thereby 

achieving unprecedented denoising performance with high 

preservation of detail10. 

 

Researchers11 significantly advanced CNN-based denoising 

with DnCNN, which incorporates batch normalization to 

stabilize the learning process and uses a residual learning 

strategy to focus on removing noise12.  This architecture was 

particularly effective because it allowed the network to 

target noise patterns directly, enhancing both learning 

efficiency and denoising performance. The adaptation of U-

Net architectures13 for denoising introduced a symmetric, 

encoder-decoder structure that excels in capturing multi-

scale contextual information, crucial for reconstructing clean 

images. Incorporating attention mechanisms14 into 

denoising networks has allowed these models to focus more 

on areas with significant noise, adaptively enhancing their 

processing based on the content of the image.  

 

This results in more effective noise reduction in complex 

scenes15. Transfer learning has been used to great effect in 

denoising16 where a network trained on one task or dataset is 

fine-tuned for denoising, drastically reducing the need for 

extensive denoising-specific data.  

 

The establishment of standardized benchmarks and 

metrics17,18 has been crucial for the progression of denoising 

research, allowing for the systematic comparison of new 

techniques against established methods under controlled 

conditions. This helps in identifying truly innovative 

approaches that offer practical improvements19. Focusing on 

specific applications like disaster management imaging20 

and surveillance21, research has tailored denoising 

techniques to meet the unique requirements of these fields, 

such as high precision and low-latency, demonstrating the 

versatility of advanced denoising methods22.  

 

With the increasing resolution of images, computational 

efficiency23 has become a key concern. Research has 

focused on optimizing denoising algorithms to run faster and 

more efficiently, even on resource-constrained devices, by 

simplifying network architectures or through hardware-

accelerated implementations. Recent developments have 

introduced hybrid models24 that combine the strengths of 

different neural network architectures to handle complex 

noise environments more effectively. These models 

integrate features from CNNs, recurrent neural networks and 

attention-based networks to adaptively respond to various 

noise patterns25. 

 

Image denoising continues to be a challenging task because 

most existing solutions either compromise important image 

information or demand heavy computation. Early filtering 

techniques such as Gaussian and median filters reduce noise 

to some extent, but they inevitably smooth out edges and fine 

details that are often critical for later processing. Dictionary 

learning methods improved structural preservation, yet their 

iterative nature makes them computationally expensive and 

impractical for large datasets or real-time applications26. 

Patch-based strategies like Non-Local Means and BM3D 

demonstrated strong performance by exploiting self-

similarities within images, but their effectiveness quickly 

diminishes when the noise is irregular, non-Gaussian, or 

present at higher intensities27. With the introduction of deep 

learning, networks such as DnCNN brought significant 

progress by directly learning noise patterns from data.  

 

However, these models often oversimplify textured regions 

and lack robustness when applied to images outside the 

training distribution. Variants of U-Net have attempted to 

capture multi-scale features, yet their memory and 

computational requirements limit their practical use. 

Attention modules provide adaptive focus on noisy regions, 

but their success still depends on the strength of the 

backbone network, leading to inconsistent results in 

complex scenarios28. Transfer learning reduces data 

dependency, but domain mismatch remains a persistent 

challenge. These limitations underline the absence of a 

denoising approach that can simultaneously preserve fine 

details, adapt to multiple noise types, generalize across 

datasets and remain computationally efficient. 

 

The evolution of image denoising has progressed from 

traditional filtering methods to advanced deep learning 

architectures. Early techniques, such as Non-Local Means 

(NLM) and Block-Matching and 3D Filtering (BM3D), set 

high benchmarks by exploiting image self-similarity.  

 

However, their reliance on explicit patch searching makes 

them computationally expensive and less effective on 

complex, non-Gaussian noise, often forcing a compromise 

between noise reduction and the preservation of fine details. 

The advent of deep learning, exemplified by models like the 

Denoising Convolutional Neural Network (DnCNN), 
revolutionized the field by learning noise patterns directly 

from data. Despite their success, these methods often suffer 

from a significant drawback: a tendency to over-smooth 
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textural regions, as their uniform convolutional operations 

fail to distinguish between subtle image features and noise. 

This leaves a clear research gap for a method that can 

simultaneously preserve high-frequency details, maintain 

computational efficiency and achieve high perceptual 

quality. 

 

This work directly addresses this multifaceted challenge by 

introducing a synergistic framework uniquely positioned to 

overcome the limitations of prior art. Our approach's novelty 

lies not in a single component, but in the strategic integration 

of several advanced modules. We employ a Dual Path 

Network (DPN) to serve as a highly efficient and powerful 

feature-extraction backbone. To combat the over-smoothing 

problem, a Convolutional Block Attention Module (CBAM) 

is integrated to allow the model to adaptively focus on and 

preserve information-rich edges and textures.  

 

Finally, to ensure the output is not just quantitatively 

accurate but also visually plausible, we utilize a Generative 

Adversarial Network (GAN) for training, which promotes 

perceptual realism. This cohesive design distinguishes our 

work, creating a comprehensive solution that explicitly 

balances detail preservation, perceptual fidelity and 

computational speed, thereby overcoming the critical trade-

offs that have constrained previous denoising techniques. 

 

The present study addresses these gaps by introducing a 

denoising framework that combines the strengths of several 

advanced strategies. A Dual Path Network (DPN) is used to 

promote effective feature reuse and propagation, while a 

Convolutional Block Attention Module (CBAM) directs the 

model’s focus to the most informative regions. A 

progressive learning strategy ensures stable convergence 

from low to high resolutions and adversarial training with a 

Generative Adversarial Network (GAN) enhances 

perceptual quality in the restored images.  

 

By integrating these components into a compact and 

efficient design, the proposed method not only improves 

standard measures such as Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index Measure (SSIM) but 

also demonstrates higher perceptual fidelity on metrics like 

Learned Perceptual Image Patch Similarity (LPIPS) and 

Natural Image Quality Evaluator (NIQE). This positions the 

work as a comprehensive solution that overcomes the 

shortcomings of traditional and existing deep learning-based 

methods. 

 

Material and Methods 
The proposed image denoising framework is designed as a 

synergistic system that integrates several advanced deep 

learning strategies. At its core, a Dual Path Network (DPN) 

is employed for rich and efficient feature extraction, 

combining the benefits of ResNets and DenseNets. To 

combat the common problem of over-smoothing, a 

Convolutional Block Attention Module (CBAM) is 

integrated, forcing the network to focus on informative 

features and pixel regions. To ensure the output is visually 

plausible, the DPN-based generator is trained within a 

Generative Adversarial Network (GAN) framework, where 

a discriminator pushes the generator to produce perceptually 

realistic images. The entire training process is guided by a 

composite loss function that balances a pixel-wise loss, an 

adversarial loss GAN and a perceptual loss.  

 

To validate this framework, the model was trained on the 

DIV2K and BSD500 datasets with synthetic Gaussian, 

Poisson and Speckle noise. Performance was assessed using 

a comprehensive suite of metrics: PSNR for pixel accuracy, 

SSIM for structural preservation and both LPIPS and NIQE 

for perceptual quality. The framework was implemented in 

PyTorch and trained for 200 epochs on an NVIDIA Tesla 

V100 GPU using the Adam optimizer, a batch size of 16 and 

an initial learning rate of 1×10 −4. The proposed method is 

compared against BM3D, DnCNN, FFDNet and recent 

state-of-the-art models. 

 

Our methodology is shown in figure 1. To ensure the 

robustness and generalization capability of the proposed 

image denoising system, we utilize a diverse set of datasets 

encompassing various types of noise and image content. The 

primary datasets employed for training and evaluation are 

DIV2K, BSD500 and synthetic datasets with added 

Gaussian, Poisson and speckle noise. 

 

DIV2K Dataset: The DIV2K (Diverse 2K) dataset4 is a 

well-recognized benchmark commonly employed for image 

super-resolution and denoising research. It contains 800 

high-resolution (2K) images for training, along with 100 

images each for validation and testing. The dataset 

encompasses a wide spectrum of scenes, ranging from urban 

areas and natural landscapes to everyday objects, offering 

diverse textures and structural details that are crucial for 

enhancing denoising performance. 

 

 Resolution: 2K (2040 x 1080) 

 Training Images: 800 

 Validation Images: 100 

 Testing Images: 100 

 

BSD500 Dataset: The BSD500 (Berkeley Segmentation 

Dataset)25 consists of 500 natural images divided into 

training (200 images), validation (100 images) and test sets 

(200 images). This dataset is well-known for its diverse and 

complex visual content, making it suitable for evaluating 

image processing algorithms. 

 

 Resolution: Varies (typically around 481 x 321) 

 Training Images: 200 

 Validation Images: 100 

 Testing Images: 200 

 
Synthetic Noise Datasets: In addition to natural images, we 

generate synthetic noisy images to train the model on various 

types of noise. The synthetic noise datasets7 include: 
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 Gaussian Noise: Additive white Gaussian noise with 

different variance levels. 

 Poisson Noise: Noise that follows a Poisson distribution, 

commonly found in low-light imaging. 

 Speckle Noise: Multiplicative noise typically observed 

in radar and disaster management imaging. 

 

For each type of noise, images are generated with varying 

noise levels to simulate real-world scenarios. 

 
Preprocessing: To enhance the model's robustness and 

ensure consistency during training, several preprocessing 

steps are applied to the datasets: 

 

 Normalization: Images are normalized to a standard 

range [0, 1] to ensure uniformity across the dataset. 

 Random Cropping: Randomly cropped patches from 

the original images are used during training to increase 

the diversity of training samples. For example, 256x256 

patches are extracted from larger images. 

 Data Augmentation: Augmentation techniques such as 

horizontal and vertical flipping, rotation and scaling are 

applied to increase the variety of training data and 

prevent overfitting. 

 Advanced Augmentation: Techniques like mixup 

(combining two images) and cutout (randomly masking 

a section of an image) are used to further enhance the 

robustness of the model. 

 

Integration with Training: The prepared datasets are 

integrated into the training pipeline using data loaders that 

handle the loading, augmentation and batching of images. 

The data loaders are designed to ensure efficient feeding of 

data to the neural network during training, leveraging the 

preprocessing steps to maximize the model's learning 

efficiency. By employing a combination of natural and 

synthetic datasets, along with comprehensive preprocessing 

techniques, the proposed image denoising system is trained 

to handle a wide range of noise types and image content, 

ensuring high performance and generalization across 

different real-world scenarios. 

 

Dual Path Network Architecture (DPN): The system 

employs a dual path network (DPN), which integrates both 

residual and densely connected networks. This architecture 

ensures effective propagation and reuse of features, 

facilitating robust and detailed extraction of noise 

characteristics from images. Each layer in the DPN 

computes new states by integrating feature maps from 

previous layers, enhancing learning capacity and feature 

diversity. 

 

 
Fig. 1: Proposed method 

Denoised Image Real Clean Image 

Composite Loss Calculation 

Denoised Output 

 

Attention Refined Features 
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GAN Training 
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Enhanced Mathematical Representation: 

 

𝐹(𝑙)=𝐻l([𝑅l(𝑥l−1),𝐷l(𝑓𝑙−1)])                                             (1) 

 

where 𝐹(𝑙) denotes the output of the 𝑙-th layer, 𝐻l represents 

a composite function including convolutions and 

nonlinearities, 𝑅l is the residual path transformation and 𝐷l 

is the dense path transformation. 

 

To further refine the feature extraction, we employ a dual-

path combination:  

 

𝑅l(𝑥l−1) =xl−1+𝑓(𝑊r⋅𝑥l−1)                                                (2) 

𝐷l(𝑓l−1)=Concat(𝑓l(𝑥l−1),𝑓2(𝑓l−1))                                 (3) 

 

where 𝑊r is the weight matrix for the residual path, 𝑓 

denotes a non-linear activation function and 𝑓1 and 𝑓2 are 

transformations applied to feature maps in the dense path. 

 

Attention Mechanisms (Channel and Spatial Attention - 
CBAM): The architecture integrates a Convolutional Block 

Attention Module (CBAM) that refines feature 

representations by applying both spatial and channel-wise 

attention sequentially.  

 

Progressive Learning Strategy: This strategy involves 

training the network progressively from simpler tasks to 

more complex tasks. Initially, the network learns to denoise 

low-resolution images and gradually progresses to high-

resolution images, allowing the model to stabilize early 

learning phases and improve overall performance. 

 

Generative Adversarial Network Training (GAN): A 

GAN framework is adopted where the generator network is 

trained to produce denoised images and the discriminator 

network is trained to differentiate between denoised and real 

clean images. This adversarial setup forces the generator to 

produce high-quality outputs that are indistinguishable from 

true clean images. 

 

Adversarial Loss Function: 

 

𝐿GAN(P,H)=𝐸x~pdata(x) [logH(𝑥)] + 𝐸z~p(z) 

[log(1−H(P(𝑧)))]                                                                   (4) 

 

where P is the generator, H is the discriminator, 𝑥 is a real 

image from the data distribution pdata(x) and 𝑧 is a noisy 

input image sampled from the noise distribution 𝑝(𝑧). 

 

Composite Loss Function: The training process is 

governed by a composite loss function that includes mean 

squared error (MSE) for pixel accuracy, perceptual loss for 

maintaining textural similarities and adversarial loss for 

ensuring realistic denoising. 

 

Dataset Details and Preprocessing: The model is trained 

and evaluated on datasets such as DIV2K, BSD500 and 

synthetic datasets with added Gaussian, Poisson and speckle 

noise. Preprocessing includes normalization, random 

cropping, flipping and sophisticated augmentations like 

mixup and cutout to enhance robustness. 

 

Implementation Details: The system is implemented using 

PyTorch on NVIDIA Tesla V100 GPUs. The training uses 

the Adam optimizer with a learning rate of 1×10-4 , batch 

size of 16 and a cosine annealing learning rate schedule with 

warm restarts. Mixed precision training is employed to 

optimize memory usage. 

 

Model Complexity and Computational Efficiency: The 

DPN model consists of 50 million parameters, requiring 10 

GFLOPs per image of size 256x256. Model pruning and 

quantization strategies are employed to minimize the 

model’s size while enhancing its inference speed. 

 

Training Procedure and Schedule: Training is conducted 

over 200 epochs with early stopping criteria based on 

validation loss. Gradient clipping is applied to prevent 

exploding gradients and mixed precision training is used to 

optimize memory usage. The training schedule includes a 

warm-up phase followed by cosine annealing to ensure 

smooth convergence. 

 

Ablation Studies and Hyperparameter Tuning: Ablation 

studies are conducted to evaluate the impact of each module 

(e.g. CBAM, progressive learning) by systematically 

disabling them and observing performance changes. 

Hyperparameters are tuned using Bayesian optimization to 

find the optimal settings. 

 

Evaluation Metrics and Comparative Analysis: 

Performance is measured using PSNR, SSIM and LPIPS 

(Learned Perceptual Image Patch Similarity) metrics. The 

model's performance is compared with State-of-the-Art 

methods like BM3D, DnCNN and FFDNet, with results 

presented in detailed tables and graphs. Cross-dataset 

evaluations are conducted to assess robustness and 

generalization. 

 

Robustness and Generalization: The robustness of the 

model is tested on cross-dataset evaluations and its 

generalization is assessed by applying the trained model to 

unseen datasets and real-world noisy images. The model is 

fine-tuned to ensure that it can handle various noise types 

and image conditions effectively. 

 

Results and Discussion 
The effectiveness of the proposed image denoising 

framework is assessed using standard evaluation metrics. 

These measures offer a quantitative analysis of denoising 

quality, while visual inspections and confusion matrix 

representations serve as qualitative evaluations. The 

obtained results are benchmarked against leading methods 

such as BM3D, DnCNN and FFDNet, highlighting the 

enhanced performance of the proposed approach. A 

comprehensive comparison with recent State-of-the-Art 
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(SOTA) methods, including RestormerV2 and 

DiffuDenoiser, validates the effectiveness of our framework. 

As shown in table 1, our method achieves a PSNR of 32.15 

dB (σ=25), which is highly competitive and often superior 

to these cutting-edge models. While the margin in PSNR is 

modest, the practical significance of our work becomes clear 

when analyzing computational efficiency. As detailed in 

table 5, DiffuDenoiser requires over 45 million parameters 

whereas our model uses only 0.55 million, making it more 

than 80 times smaller. This drastic reduction in complexity 

translates to a significant speed advantage.  

 

Our method processes a 256x256 image in just 35 ms on a 

GPU, over twice as fast as DiffuDenoiser (Table 4). This 

level of performance is not just an incremental improvement; 

it represents a fundamental advantage for deployment. In 

critical application domains such as mobile disaster 

management imaging or embedded vision systems for 

robotics, where memory and power are highly constrained, 

a model of DiffuDenoiser's size is often unusable. Our 

framework, therefore, presents a far more practical solution, 

delivering top-tier denoising quality in a package that is 

lightweight and fast enough for real-world deployment. The 

tables summarize the performance of the proposed method 

compared to existing techniques on various noise levels and 

types. 

 

The PSNR values shown in table 1. indicate the signal-to-

noise ratio in decibels (dB), with higher values representing 

better denoising performance. The proposed method 

consistently achieves higher PSNR values across different 

types of noise, showcasing its effectiveness in reducing 

noise while preserving image details. 

 

The SSIM values shown in table 2 measure the structural 

similarity between the denoised and the ground truth images 

with higher values indicating better structural preservation. 

The proposed method achieves higher SSIM scores, 

reflecting its ability to maintain image integrity. 

 

The LPIPS metric assesses (shown in table 3) perceptual 

similarity, with lower values indicating better perceptual 

quality.

 

Table 1 

PSNR Comparison on DIV2K Dataset 

Method Gaussian 

Noise 

(σ=15) 

Gaussian 

Noise 

(σ=25) 

Poisson 

Noise 

Speckle 

Noise 

BM3D 30.67 28.32 27.45 26.78 

DnCNN 32.11 30.09 29.30 28.95 

FFDNet 32.80 30.74 29.90 29.48 

RestormerV2 33.85 31.95 31.10 30.55 

DiffuDenoiser 33.98 32.05 31.25 30.70 

Proposed 34.02 32.15 31.40 30.95 
 

Table 2 

SSIM Comparison on DIV2K Dataset 

Method Gaussian 

Noise 

(σ=15) 

Gaussian 

Noise 

(σ=25) 

Poisson 

Noise 

Speckle 

Noise 

BM3D 0.893 0.852 0.840 0.820 

DnCNN 0.912 0.880 0.870 0.860 

FFDNet 0.918 0.890 0.880 0.870 

RestormerV2  0.928 0.901 0.890 0.881 

DiffuDenoiser  0.930 0.903 0.892 0.883 

Proposed 0.932 0.905 0.895 0.885 
 

Table 3 

LPIPS Comparison on BSD500 Dataset 

Method Gaussian 

Noise 

(σ=15) 

Gaussian 

Noise 

(σ=25) 

Poisson 

Noise 

Speckle 

Noise 

BM3D 0.125 0.150 0.165 0.178 

DnCNN 0.105 0.130 0.140 0.155 

FFDNet 0.095 0.120 0.130 0.145 

RestormerV2 0.085 0.115 0.124 0.139 

DiffuDenoiser  0.082 0.112 0.122 0.137 

Proposed 0.080 0.110 0.120 0.135 
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The proposed method outperforms others, demonstrating 

superior perceptual quality in the denoised images. The 

inference time shown in table 4 measures the computational 

efficiency of each method. The proposed approach exhibits 

high efficiency, making it well-suited for deployment in 

real-time applications as in table 5. The proposed method 

shows superior generalization capabilities across different 

datasets, maintaining high PSNR values as shown in table 6. 

The ablation study demonstrates the importance of each 

component in the proposed method, with the full model 

achieving the highest PSNR as shown in table 7.  

 

The graph 1 illustrates the performance of different methods 

at various noise levels. The proposed method consistently 

achieves the highest PSNR values, indicating better 

denoising performance. The graph 2 shows the SSIM values 

for different methods across noise levels. The proposed 

method maintains higher SSIM scores, demonstrating 

superior structural preservation. The bar graph shown in 

graph 3 compares the inference times of different methods. 

The proposed method is the fastest, highlighting its 

computational efficiency. 

Fig 2 shows the output images. The confusion matrix shows 

in figure 3 high accuracy in distinguishing between clean 

and noisy images, validating the model's effectiveness. 

Table 8 shows the NIQE (Natural Image Quality Evaluator) 

of the different models.  

 

The average inference time per image indicates that the 

proposed method is highly computationally efficient, 

thereby ensuring its suitability for real-time applications. 

The reduced number of parameters compared to other deep 

learning-based methods underscores the efficiency of the 

network architecture. The cross-dataset generalization 

results highlight the robustness of the proposed method, 

performing well across different datasets. Table 9 shows 

deployment feasibility in both high-end and edge devices. 

 

The ablation study confirms the contributions of each 

component (CBAM, progressive learning, GAN training) to 

the overall performance. The confusion matrix indicates 

high accuracy in distinguishing between clean and noisy 

images, further validating the model's effectiveness. 

 

 
Graph 1: PSNR vs. Noise Level 

 

Table 4 

Average Inference Time (ms) per Image 

Method 

256x256 

Resolution 

512x512 

Resolution 

1024x1024 

Resolution 

BM3D 120 480 1920 

DnCNN 45 180 720 

FFDNet 40 160 640 

RestormerV2  65 175 700 

DiffuDenoiser  80 240 1300 

Proposed 35 140 560 
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Graph 2: SSIM vs. Noise Level 

 

 
Graph 3: Inference Time Comparison 

 

Table 5 

Model Complexity (Number of Parameters) 

Method Number of Parameters (Millions) 

BM3D N/A 

DnCNN 0.67 

FFDNet 0.85 

RestormerV2  26.1 

DiffuDenoiser  45.5 

Proposed 0.55 
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Table 6 

Cross-Dataset Generalization (PSNR) 

Dataset BM3D DnCNN FFDNet RestormerV2 DiffuDenoiser Proposed 

DIV2K 28.32 30.09 30.74 31.95 32.05 32.15 

BSD500 27.85 29.50 30.20 31.60 31.75 31.90 

Set14 26.95 28.60 29.30 30.80 30.90 31.05 

 

Table 7 

Ablation Study Results (PSNR) 

Model Variant Gaussian Noise (σ=25) 

Without CBAM 30.50 

Without Progressive Learning 30.20 

Without GAN Training 30.00 

Full Model 32.15 

 

 
Fig. 2: Output images 

 

 
Fig. 3: Confusion Matrix of proposed method 
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Table 8 

NIQE Parameter Values 

Method NIQE ↓ 

BM3D 4.65 

DnCNN 4.12 

FFDNet 3.95 

RestormerV2  3.55 

DiffuDenoiser  3.40 

Proposed 3.30 

 

Table 9 

Runtime on CPU vs. GPU 

Method CPU Time (ms) GPU Time (ms) 

BM3D 680 N/A 

DnCNN 140 45 

FFDNet 130 40 

RestormerV2 ~1200 65 

DiffuDenoiser  ~1850 80 

Proposed 115 35 

 

Visual comparisons show that the proposed method 

effectively removes noise while preserving important image 

features, providing a clear qualitative improvement. Overall, 

the comprehensive evaluation across multiple metrics, 

graphical analysis, confusion matrices and visual 

comparisons robustly supports the effectiveness and 

superiority of the proposed image denoising system. 

 

Limitations and Future Work 
Despite the strong performance of the proposed framework, 

it is important to acknowledge its limitations which also 

present opportunities for future research. First, the use of a 

GAN-based training framework, while crucial for enhancing 

perceptual quality, can occasionally introduce minor, 

hallucinated textures. This is a well-known trade-off where 

the model may generate plausible but factually incorrect 

details to create a visually realistic image. Future work could 

explore hybrid loss functions that better balance perceptual 

quality with pixel-wise fidelity to mitigate this effect. 

 

Second, the model was trained on specific synthetic noise 

types (Gaussian, Poisson and Speckle). While it generalizes 

well across datasets with these patterns, its performance on 

complex, real-world noise that does not follow these ideal 

distributions (e.g. JPEG compression artifacts, sensor-

specific noise), may be less effective. A promising direction 

is to train the model on more diverse, realistic noise datasets 

to improve its real-world applicability. 

 

Finally, while the framework is highly efficient compared to 

other SOTA models, its performance on extremely high 

noise levels was not extensively evaluated. In scenarios 

where noise overwhelms the image content, the model's 

ability to restore critical underlying structures may be 

limited. Investigating multi-stage or iterative denoising 

approaches could be a viable strategy to tackle such extreme 

cases in the future. Addressing these limitations will be the 

focus of subsequent research to create an even more robust 

and universally applicable denoising solution. 

 

Conclusion 
This research presented a novel deep learning framework 

that successfully addresses the critical trade-off between 

image denoising quality and computational efficiency. By 

synergistically integrating a Dual Path Network (DPN), a 

Convolutional Block Attention Module (CBAM) and a 

Generative Adversarial Network (GAN), the proposed 

model establishes a new State-of-the-Art in practical image 

restoration. Quantitatively, the framework demonstrated 

superior performance, achieving a Peak Signal-to-Noise 

Ratio (PSNR) of up to 34.02 dB and a Structural Similarity 

Index Measure (SSIM) of up to 0.932, surpassing both 

traditional and recent deep learning models.  

 

More significantly, the work's primary impact lies in its 

exceptional efficiency. With a lightweight architecture of 

only 0.55 million parameters and a rapid inference time of 

35 ms, it is substantially smaller and faster than leading 

competitors without sacrificing performance. This 

outstanding balance of high accuracy and low computational 

overhead makes the framework a highly practical solution 

for real-world scenarios, enabling advanced, real-time 

denoising on resource-constrained platforms such as in 

mobile disaster management imaging and embedded vision 

systems. Future research will extend this efficient approach 

to more complex tasks like video denoising and other image 

reconstruction domains. 
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